

Description	TSR101-EB				
Acceleration Sensor	Shock (3 axes)				
Accelerometer Type	MEMS Semiconductor				
Acceleration Range					
Acceleration Resolution	*See Table for Details				
Calibrated Accuracy					
Memory	349,471/channel				
Reading Rate	1,024Hz to 1 second				
Frequency Response	0Hz to approximately 400Hz (50, 100 g)				
Typical Battery Life	30 days typical				
Required Interface Package	IFC200				
Baud Rate	115,200				
Operating Environment	-20 °C to +54 °C, 0 to 95%RH non-condensing				
Dimensions	Dimensions 5.5" x 5.4" x 3.2" (140 mm x 137 mm x 80 mm)				
Materials	ials Anodized aluminum				
Weight	Weight 5lbs (2.3kg)				
Approvals	Approvals CE				

*TSR101-EB Acceleration Range, Resolution and Accuracy

Range (g)	<u>+</u> 5	<u>+</u> 50	<u>+</u> 100	<u>+</u> 250
Resolution (g)	0.01	0.05	0.1	0.2
Accuracy (g)	<u>+</u> 0.2	<u>+</u> 1	<u>+</u> 2	<u>+</u> 4

Battery Warning

WARNING: FIRE, EXPLOSION, AND SEVERE BURN HAZARD. DO NOT SHORT CIRCUIT, CHARGE, FORCE OVER DISCHARGE, DISASSEMBLE, CRUSH, PENETRATE OR INCINERATE. BATTERY MAY LEAK OR EXPLODE IF HEATED ABOVE 54 °C (129 °F).

> Specifications subject to change. See MadgeTech's terms and conditions at www.madgetech.com

> > MadgeTech, Inc. 6 Warner Road • Warner, NH 03278 Phone 603.456.2011 • Fax 603.456.2012 www.madgetech.com • info@madgetech.com

DOC-1164035-00 REV 8 01.23.2018

Product Information Card

TSR101-EB-5

Tri-Axial ±5g, Transient Shock Data Logger with an Extended Battery Life

TSR101-EB-50

Tri-Axial ± 50 g, Transient Shock Data Logger with an Extended Battery Life

TSR101-EB-100

Tri-Axial <u>+</u>100g, Transient Shock Data Logger with an Extended Battery Life **TSR101-EB-250**

Tri-Axial ±250g, Transient Shock Data Logger with an Extended Battery Life

Product Notes

How it Works

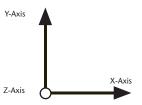
Once the logger is started samples are taken on each axis (X, Y and Z) every 1024Hz (1ms). These samples are compared with the trigger values and if it crosses the threshold value then it records the timestamp and starts logging the triggered data.

If the samples are not above the threshold value then it is logged as the pre-trigger data. Since only 50 pre-trigger values can be recorded the data gets overwritten if the logger is not triggered within 50 pre-trigger values.

The sampling frequency is the same for all reading rates therefore the samples are skipped based on the reading rate. For example: if the reading rate is 512Hz the samples are taken every 1ms but every other sample gets logged instead of logging every sample.

Trigger Settings

Below is a table of default trigger values based on the range of the logger. All axis are enabled to check for triggers at these g levels.


Range	5 g	50 g	100 g	250 g
Trigger Value	2.5 g	25 g	52.5 g	120 g

To edit trigger values, select **Start Device** from the **Start Menu**. Click **Yes**, then select **Trigger Settings**. Click the **Change** button. Each axis can be set to trigger at a certain g force level. Check the **Enable Trigger** box to enable the trigger for that axis. The values can be typed in manually or configured by using the slider control. Click **Save** to save the changes.

To initiate the TSR101-EB to constantly sample, set the high and low trigger settings to 0g.

Axis Orientation

When the TSR101-EB is laying flat, with the label facing up, the x-axis indicates left to right direction and will read ~0 g when still. The y-axis reads in a top to bottom direction and reads ~0 g when still. The z-axis reads perpendicular to the other two axis, and will read ~1 g when still.

Installation Guide

Installing the Interface cable

- IFC200

Insert the device into a USB port. The drivers will install automatically.

Installing the software

Insert the Software USB Stick in an open USB port. If the autorun does not appear, locate the drive on the computer and double click on **Autorun.exe**. Follow the instructions provided in the Wizard.

Device Operation

Connecting and Starting the data logger

- Once the software is installed and running, plug the interface cable into the data logger.
- Connect the USB end of the interface cable into an open USB port on the computer.
- The device will appear in the Connected Devices list, highlight the desired data logger.
- For most applications, select "Custom Start" from the menu bar and choose the desired start method, reading rate and other parameters appropriate for the data logging application and click "Start". ("Quick Start" applies the most recent custom start options, "Batch Start" is used for managing multiple loggers at once, "Real Time Start" stores the dataset as it records while connected to the logger.)
- The status of the device will change to "Running", "Waiting to Start" or "Waiting to Manual Start", depending upon your start method.
- Disconnect the data logger from the interface cable and place it in the environment to measure.

Note: The device will stop recording data when the end of memory is reached or the device is stopped. At this point the device cannot be restarted until it has been re-armed by the computer.

Downloading data from a data logger

- Highlight the data logger in the Connected Devices list. Click "Stop" on the menu bar.
- Once the data logger is stopped, with the logger highlighted, click "**Download**". You will be prompted to name your report.
- Downloading will offload and save all the recorded data to the PC.

Device Maintenance

Battery Replacement

Materials:

Phillips Screwdriver

Replacement Battery (MN1300)

- Remove the cover from the device by unscrewing the four screws.
- Tip out the battery holder. Note: Do not pull on the battery leads.
- Replace the 6 D-cell batteries and put the holder back into the device.
- Replace the cover taking care not to pinch the wires. Screw the enclosure back together securely.

Note: Be sure not to over tighten the screws or strip the threads.

Recalibration

The TSR101-EB standard calibration is performed at 0 g for the x-axis, 0 g for the y-axis and

1 g for the z-axis.

Note: The shock parameters are not traceable to NIST.

To send the devices back, visit www.madgetech.com, select Services then RMA Process.